Hopf bifurcation for fully nonlinear equations in Banach space

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Periodic Solutions for Nonlinear Evolution Equations in a Banach Space

We prove an existence result for 7"-periodic mild solutions to nonlinear evolution equations of the form u(t) + Au(t) BF(t, u(t)) , t€R+. y Here (X, \\-\\) is a real Banach space, A: D(A) C X —> 2 is an operator with A — a! m-accretive for some a > 0 and such that -A. generates a compact semigroup, while F: R+ x D(A) —► X is a Carathéodory mapping which is T-periodic with respect to its first a...

متن کامل

A Class of Nonlinear Evolution Equations in a Banach Space

where the unknown function/is from a real number interval into a Banach space X. For suitable real numbers t and vectors x in X, Ait, x) is the infinitesimal generator of a holomorphic semigroup of linear contraction operators in X, and certain regularity requirements are placed on the function (/, x) -> Ait, x). After proving a local existence, uniqueness, and stability theorem for (*), we con...

متن کامل

Hopf Bifurcation Analysis of Distributed Delays Equations

In this article, we develop a modified version of the graphical Hopf bifurcation theorem for capturing smooth oscillations of delay differential equations with distributed delays. Our approach relies on a simple interpretation of the effect of the distributed delay based on the Laplace transform. The theoretical results are illustrated with an example of neural networks.

متن کامل

Hopf bifurcation formula for first order differential-delay equations

This work presents an explicit formula for determining the radius of a limit cycle which is born in a Hopf bifurcation in a class of first order constant coefficient differential-delay equations. The derivation is accomplished using Lindstedt s perturbation method. 2005 Elsevier B.V. All rights reserved. PACS: 02.30.Ks; 02.30.Oz

متن کامل

Equivariant Hopf bifurcation for functional differential equations of mixed type

In this paper we employ the Lyapunov–Schmidt procedure to set up equivariant Hopf bifurcation theory of functional differential equations of mixed type. In the process we derive criteria for the existence and direction of branches of bifurcating periodic solutions in terms of the original system, avoiding the process of center manifold reduction. © 2010 Elsevier Ltd. All rights reserved.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales de l'Institut Henri Poincaré C, Analyse non linéaire

سال: 1986

ISSN: 0294-1449

DOI: 10.1016/s0294-1449(16)30382-1